cursive/src/vec.rs
2019-10-07 08:43:52 -07:00

537 lines
13 KiB
Rust

//! Points on the 2D character grid.
use std::cmp::{max, min, Ordering};
use std::ops::{Add, Div, Mul, Sub};
use num::traits::Zero;
use crate::div;
use crate::XY;
/// Simple 2D size, in cells.
///
/// Note: due to a bug in rustdoc ([#32077]), the documentation for `Vec2` is
/// currently shown on the [`XY`] page.
///
/// [#32077]: https://github.com/rust-lang/rust/issues/32077
/// [`XY`]: ../struct.XY.html
pub type Vec2 = XY<usize>;
impl<T: PartialOrd> PartialOrd for XY<T> {
/// `a < b` <=> `a.x < b.x && a.y < b.y`
fn partial_cmp(&self, other: &XY<T>) -> Option<Ordering> {
if self == other {
Some(Ordering::Equal)
} else if self.x < other.x && self.y < other.y {
Some(Ordering::Less)
} else if self.x > other.x && self.y > other.y {
Some(Ordering::Greater)
} else {
None
}
}
}
impl XY<usize> {
/// Returns a `Vec2` with `usize::max_value()` in each axis.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// assert!(Vec2::new(9999, 9999) < Vec2::max_value());
/// ```
pub fn max_value() -> Self {
Self::new(usize::max_value(), usize::max_value())
}
/// Saturating subtraction. Computes `self - other`, saturating at 0.
///
/// Never panics.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let u = Vec2::new(1, 2);
/// let v = Vec2::new(2, 1);
/// assert_eq!(u.saturating_sub(v), Vec2::new(0, 1));
/// ```
pub fn saturating_sub<O: Into<Self>>(&self, other: O) -> Self {
let other = other.into();
self.zip_map(other, usize::saturating_sub)
}
/// Saturating addition with a signed vec.
///
/// Any coordinates saturates to 0.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// # use cursive::XY;
/// let u = Vec2::new(1, 2);
/// let v = XY::<isize>::new(-2, 1);
/// assert_eq!(u.saturating_add(v), Vec2::new(0, 3));
/// ```
pub fn saturating_add<O: Into<XY<isize>>>(&self, other: O) -> Self {
let other = other.into();
self.zip_map(other, |s, o| {
if o > 0 {
s.saturating_add(o as usize)
} else {
s.saturating_sub((-o) as usize)
}
})
}
/// Term-by-term integer division that rounds up.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let u = Vec2::new(1, 6);
/// let v = Vec2::new(2, 3);
/// assert_eq!(u.div_up(v), Vec2::new(1, 2));
/// ```
pub fn div_up<O>(&self, other: O) -> Self
where
O: Into<Self>,
{
self.zip_map(other.into(), div::div_up)
}
/// Checked subtraction. Computes `self - other` if possible.
///
/// Returns `None` if `self.x < other.x || self.y < other.y`.
///
/// Never panics.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let xy = Vec2::new(1, 2);
/// assert_eq!(xy.checked_sub((1, 1)), Some(Vec2::new(0, 1)));
/// assert_eq!(xy.checked_sub((2, 2)), None);
/// ```
pub fn checked_sub<O: Into<Self>>(&self, other: O) -> Option<Self> {
let other = other.into();
if self.fits(other) {
Some(*self - other)
} else {
None
}
}
/// Returns a `XY<isize>` from `self`.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// # use cursive::XY;
/// let v: XY<isize> = Vec2::new(1, 2).signed().map(|i| i - 5);
/// assert_eq!(v, XY::new(-4, -3));
///
/// let u = Vec2::new(3, 4);
/// assert_eq!(u.saturating_add(v), Vec2::new(0, 1));
/// ```
pub fn signed(self) -> XY<isize> {
self.into()
}
}
impl<T: Ord> XY<T> {
/// Returns `true` if `self` could fit inside `other`.
///
/// Shortcut for `self.x <= other.x && self.y <= other.y`.
///
/// If this returns `true`, then `other - self` will not underflow.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let v = Vec2::new(1, 2);
/// assert!(v.fits_in((1, 2)));
/// assert!(v.fits_in((3, 3)));
/// assert!(!v.fits_in((2, 1)));
/// ```
pub fn fits_in<O: Into<Self>>(&self, other: O) -> bool {
let other = other.into();
self.x <= other.x && self.y <= other.y
}
/// Returns `true` if `other` could fit inside `self`.
///
/// Shortcut for `self.x >= other.x && self.y >= other.y`.
///
/// If this returns `true`, then `self - other` will not underflow.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let v = Vec2::new(1, 2);
/// assert!(v.fits((1, 2)));
/// assert!(v.fits((0, 0)));
/// assert!(!v.fits((2, 1)));
/// ```
pub fn fits<O: Into<Self>>(&self, other: O) -> bool {
let other = other.into();
self.x >= other.x && self.y >= other.y
}
/// Returns `true` if `other` is strictly less than `self` in each axis.
pub fn strictly_lt<O: Into<Self>>(&self, other: O) -> bool {
let other = other.into();
self < &other
}
/// Returns `true` if `other` is strictly greater than `self` in each axis.
pub fn strictly_gt<O: Into<Self>>(&self, other: O) -> bool {
let other = other.into();
self > &other
}
/// Returns a new Vec2 that is a maximum per coordinate.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// assert_eq!(Vec2::max((1, 2), (3, 1)), Vec2::new(3, 2));
/// ```
pub fn max<A: Into<XY<T>>, B: Into<XY<T>>>(a: A, b: B) -> Self {
let a = a.into();
let b = b.into();
a.zip_map(b, max)
}
/// Returns a new Vec2 that is no larger than any input in both dimensions.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// assert_eq!(Vec2::min((1, 2), (3, 1)), Vec2::new(1, 1));
/// ```
pub fn min<A: Into<XY<T>>, B: Into<XY<T>>>(a: A, b: B) -> Self {
let a = a.into();
let b = b.into();
a.zip_map(b, min)
}
/// Returns the minimum of `self` and `other`.
///
/// This is equivalent to `Vec2::min(self, other)`.
pub fn or_min<O: Into<XY<T>>>(self, other: O) -> Self {
Self::min(self, other)
}
/// Returns the maximum of `self` and `other`.
///
/// This is equivalent to `Vec2::max(self, other)`.
pub fn or_max<O: Into<XY<T>>>(self, other: O) -> Self {
Self::max(self, other)
}
}
impl<T: Ord + Add<Output = T> + Clone> XY<T> {
/// Returns (max(self.x,other.x), self.y+other.y)
pub fn stack_vertical(&self, other: &Self) -> Self {
Self::new(
max(self.x.clone(), other.x.clone()),
self.y.clone() + other.y.clone(),
)
}
/// Returns (self.x+other.x, max(self.y,other.y))
pub fn stack_horizontal(&self, other: &Self) -> Self {
Self::new(
self.x.clone() + other.x.clone(),
max(self.y.clone(), other.y.clone()),
)
}
/// Returns `true` if `self` fits in the given rectangle.
pub fn fits_in_rect<O1, O2>(&self, top_left: O1, size: O2) -> bool
where
O1: Into<Self>,
O2: Into<Self>,
{
let top_left = top_left.into();
self.fits(top_left.clone()) && self < &(top_left + size)
}
}
impl<T: Add> XY<T> {
/// Returns `self.x + self.y`.
pub fn sum(self) -> T::Output {
self.fold(std::ops::Add::add)
}
}
impl<T: Mul> XY<T> {
/// Returns `self.x * self.y`
pub fn product(self) -> T::Output {
self.fold(std::ops::Mul::mul)
}
}
impl<T: Zero + Clone> XY<T> {
/// Returns a vector with the X component of self, and y=0.
///
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let xy = XY::new(1, 2);
/// assert_eq!(xy.keep_x(), XY::new(1, 0));
/// ```
pub fn keep_x(&self) -> Self {
Self::new(self.x.clone(), T::zero())
}
/// Returns a vector with the Y component of self, and x=0.
///
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let xy = XY::new(1, 2);
/// assert_eq!(xy.keep_y(), XY::new(0, 2));
/// ```
pub fn keep_y(&self) -> Self {
Self::new(T::zero(), self.y.clone())
}
/// Alias for `Self::new(0,0)`.
///
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// assert_eq!(Vec2::zero(), Vec2::new(0, 0));
/// ```
pub fn zero() -> Self {
Self::new(T::zero(), T::zero())
}
}
impl<'a, T> From<&'a XY<T>> for XY<T>
where
T: Clone,
{
/// Clone a XY
///
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let xy = XY::new(String::from("a"), String::from("ab"));
/// assert_eq!(XY::from(&xy), xy);
/// ```
fn from(t: &'a XY<T>) -> Self {
t.clone()
}
}
// Anything that can become XY<usize> can also become XY<isize>
impl<T> From<T> for XY<isize>
where
T: Into<XY<usize>>,
{
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// # use cursive::vec::Vec2;
/// let u = Vec2::new(1, 2);
/// let v: XY<isize> = XY::from(u);
/// assert_eq!(v, XY::new(1, 2));
/// ```
fn from(t: T) -> Self {
let other = t.into();
Self::new(other.x as isize, other.y as isize)
}
}
impl From<(i32, i32)> for XY<usize> {
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let xy: XY<isize> = XY::from((-1i32, -2i32));
/// assert_eq!(xy, XY::new(-1, -2));
/// ```
fn from((x, y): (i32, i32)) -> Self {
(x as usize, y as usize).into()
}
}
impl From<(u32, u32)> for XY<usize> {
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let v = Vec2::from((1u32, 2u32));
/// assert_eq!(v, Vec2::new(1, 2));
/// ```
fn from((x, y): (u32, u32)) -> Self {
(x as usize, y as usize).into()
}
}
impl From<(u8, u8)> for XY<usize> {
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let v = Vec2::from((1u8, 2u8));
/// assert_eq!(v, Vec2::new(1, 2));
/// ```
fn from((x, y): (u8, u8)) -> Self {
(x as usize, y as usize).into()
}
}
impl From<(u16, u16)> for XY<usize> {
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let v = Vec2::from((1u16, 2u16));
/// assert_eq!(v, Vec2::new(1, 2));
/// ```
fn from((x, y): (u16, u16)) -> Self {
(x as usize, y as usize).into()
}
}
// Allow xy + (into xy)
impl<T, O> Add<O> for XY<T>
where
T: Add<Output = T>,
O: Into<XY<T>>,
{
type Output = Self;
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let xy = XY::new(1, 2);
/// assert_eq!(xy + (2, 3), XY::new(3, 5));
/// ```
fn add(self, other: O) -> Self {
self.zip_map(other.into(), Add::add)
}
}
impl<T, O> Sub<O> for XY<T>
where
T: Sub<Output = T>,
O: Into<XY<T>>,
{
type Output = Self;
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let xy = XY::new(1, 2);
/// assert_eq!(xy - (1, 0), XY::new(0, 2));
/// ```
fn sub(self, other: O) -> Self {
self.zip_map(other.into(), Sub::sub)
}
}
impl<T: Clone + Div<Output = T>> Div<T> for XY<T> {
type Output = Self;
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let xy = XY::new(1, 4);
/// assert_eq!(xy / 2, XY::new(0, 2));
/// ```
fn div(self, other: T) -> Self {
self.map(|s| s / other.clone())
}
}
impl Mul<usize> for XY<usize> {
type Output = Vec2;
/// # Examples
///
/// ```rust
/// # use cursive::vec::Vec2;
/// let v = Vec2::new(1, 2);
/// assert_eq!(v * 2, Vec2::new(2, 4));
/// ```
fn mul(self, other: usize) -> Vec2 {
self.map(|s| s * other)
}
}
impl<T> Mul<XY<T>> for XY<T>
where
T: Mul<T>,
{
type Output = XY<T::Output>;
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let u = XY::new(1, 2);
/// let v = XY::new(2, 3);
/// assert_eq!(u * v, XY::new(2, 6));
/// ```
fn mul(self, other: XY<T>) -> Self::Output {
self.zip_map(other, |s, o| s * o)
}
}
impl<T> Div<XY<T>> for XY<T>
where
T: Div<T>,
{
type Output = XY<T::Output>;
/// # Examples
///
/// ```rust
/// # use cursive::XY;
/// let u = XY::new(2, 3);
/// let v = XY::new(1, 2);
/// assert_eq!(u / v, XY::new(2, 1));
/// ```
fn div(self, other: XY<T>) -> Self::Output {
self.zip_map(other, |s, o| s / o)
}
}
#[cfg(test)]
mod tests {
use super::Vec2;
#[test]
fn test_from() {
let vi32 = Vec2::from((4i32, 5i32));
let vu32 = Vec2::from((4u32, 5u32));
let vusize = Vec2::from((4usize, 5usize));
let vvec = Vec2::from(Vec2::new(4, 5));
assert_eq!(vi32 - vu32, vusize - vvec);
}
}