cursive/src/view/linear_layout.rs

284 lines
9.1 KiB
Rust
Raw Normal View History

2016-07-13 08:19:05 +00:00
use XY;
use view::View;
2016-07-13 08:19:05 +00:00
use view::SizeCache;
use vec::Vec2;
use printer::Printer;
use orientation::Orientation;
2016-03-15 22:37:57 +00:00
use event::{Event, EventResult, Key};
2016-07-13 08:19:05 +00:00
use std::cmp::min;
2015-06-08 22:38:10 +00:00
/// Arranges its children linearly according to its orientation.
pub struct LinearLayout {
children: Vec<Child>,
orientation: Orientation,
2015-06-08 22:11:44 +00:00
focus: usize,
2016-07-13 08:19:05 +00:00
cache: Option<XY<SizeCache>>,
}
2015-06-08 22:38:10 +00:00
struct Child {
view: Box<View>,
size: Vec2,
weight: usize,
}
2016-07-13 08:19:05 +00:00
impl Child {
fn get_min_size(&mut self, req: Vec2) -> Vec2 {
self.size = self.view.get_min_size(req);
self.size
}
}
impl LinearLayout {
2015-06-08 22:38:10 +00:00
/// Creates a new layout with the given orientation.
pub fn new(orientation: Orientation) -> Self {
LinearLayout {
children: Vec::new(),
orientation: orientation,
2015-06-08 22:11:44 +00:00
focus: 0,
2016-07-13 08:19:05 +00:00
cache: None,
}
}
2015-06-08 22:38:10 +00:00
/// Modifies the weight of the last child added.
///
/// It is an error to call this before adding a child (and it will panic).
pub fn weight(mut self, weight: usize) -> Self {
self.children.last_mut().unwrap().weight = weight;
self
}
2015-06-08 22:38:10 +00:00
/// Adds a child to the layout.
pub fn child<V: View + 'static>(mut self, view: V) -> Self {
self.children.push(Child {
view: Box::new(view),
size: Vec2::zero(),
weight: 0,
});
2016-07-13 08:19:05 +00:00
self.invalidate();
self
}
2016-07-13 08:19:05 +00:00
// Invalidate the view, to request a layout next time
fn invalidate(&mut self) {
self.cache = None;
}
2015-06-08 22:38:10 +00:00
/// Creates a new vertical layout.
pub fn vertical() -> Self {
LinearLayout::new(Orientation::Vertical)
}
2015-06-08 22:38:10 +00:00
/// Creates a new horizontal layout.
pub fn horizontal() -> Self {
LinearLayout::new(Orientation::Horizontal)
}
2016-07-13 08:19:05 +00:00
// If the cache can be used, return the cached size.
// Otherwise, return None.
fn get_cache(&self, req: Vec2) -> Option<Vec2> {
match self.cache {
None => None,
Some(ref cache) => {
// Is our cache even valid?
// Also, is any child invalidating the layout?
if cache.x.accept(req.x) && cache.y.accept(req.y) &&
self.children_are_sleeping() {
Some(cache.map(|s| s.value))
} else {
None
}
}
}
}
fn children_are_sleeping(&self) -> bool {
!self.children
.iter()
.map(|c| &*c.view)
.any(View::needs_relayout)
}
}
impl View for LinearLayout {
fn draw(&mut self, printer: &Printer) {
// Use pre-computed sizes
let mut offset = Vec2::zero();
2016-03-15 22:37:57 +00:00
for (i, child) in self.children.iter_mut().enumerate() {
2016-07-11 02:11:21 +00:00
let printer =
&printer.sub_printer(offset, child.size, i == self.focus);
child.view.draw(printer);
// On the axis given by the orientation,
// add the child size to the offset.
2016-06-28 05:10:59 +00:00
*self.orientation.get_ref(&mut offset) += self.orientation
2016-07-10 02:05:51 +00:00
.get(&child.size);
}
}
fn needs_relayout(&self) -> bool {
2016-07-13 08:19:05 +00:00
if self.cache.is_none() {
return true;
}
2016-07-13 08:19:05 +00:00
!self.children_are_sleeping()
}
fn layout(&mut self, size: Vec2) {
2016-07-13 08:19:05 +00:00
// If we can get away without breaking a sweat, you can bet we will.
if self.get_cache(size).is_none() {
self.get_min_size(size);
}
for child in &mut self.children {
child.view.layout(child.size);
}
}
fn get_min_size(&mut self, req: Vec2) -> Vec2 {
2016-07-13 08:19:05 +00:00
// Did anything change since last time?
if let Some(size) = self.get_cache(req) {
return size;
}
// First, make a naive scenario: everything will work fine.
2016-03-15 22:37:57 +00:00
let sizes: Vec<Vec2> = self.children
2016-07-10 02:05:51 +00:00
.iter_mut()
2016-07-13 08:19:05 +00:00
.map(|c| c.get_min_size(req))
2016-07-10 02:05:51 +00:00
.collect();
2016-07-13 08:19:05 +00:00
// println_stderr!("Ideal sizes: {:?}", sizes);
let ideal = self.orientation.stack(sizes.iter());
// println_stderr!("Ideal result: {:?}", ideal);
2016-07-13 08:19:05 +00:00
// Does it fit?
if ideal.fits_in(req) {
// Champagne!
self.cache = Some(SizeCache::build(ideal, req));
return ideal;
}
// Ok, so maybe it didn't.
// Budget cuts, everyone.
let budget_req = req.with(self.orientation, 1);
// println_stderr!("Budget req: {:?}", budget_req);
let min_sizes: Vec<Vec2> = self.children
.iter_mut()
.map(|c| c.get_min_size(budget_req))
.collect();
let desperate = self.orientation.stack(min_sizes.iter());
// println_stderr!("Min sizes: {:?}", min_sizes);
// println_stderr!("Desperate: {:?}", desperate);
// I really hope it fits this time...
if !desperate.fits_in(req) {
// Just give up...
// println_stderr!("Seriously? {:?} > {:?}???", desperate, req);
self.cache = Some(SizeCache::build(desperate, req));
return desperate;
}
// This here is how much we're generously offered
let mut available = self.orientation.get(&(req - desperate));
// println_stderr!("Available: {:?}", available);
// Here, we have to make a compromise between the ideal
// and the desperate solutions.
let mut overweight: Vec<(usize, usize)> = sizes.iter()
.map(|v| self.orientation.get(v))
.zip(min_sizes.iter().map(|v| self.orientation.get(v)))
.map(|(a, b)| a - b)
.enumerate()
.collect();
// println_stderr!("Overweight: {:?}", overweight);
// So... distribute `available` to reduce the overweight...
// TODO: use child weight in the distribution...
overweight.sort_by_key(|&(_, weight)| weight);
let mut allocations = vec![0; overweight.len()];
for (i, &(j, weight)) in overweight.iter().enumerate() {
let remaining = overweight.len() - i;
let budget = available / remaining;
let spent = min(budget, weight);
allocations[j] = spent;
available -= spent;
}
// println_stderr!("Allocations: {:?}", allocations);
// Final lengths are the minimum ones + allocations
let final_lengths: Vec<Vec2> = min_sizes.iter()
.map(|v| self.orientation.get(v))
.zip(allocations.iter())
.map(|(a, b)| a + b)
.map(|l| req.with(self.orientation, l))
.collect();
// println_stderr!("Final sizes: {:?}", final_lengths);
let final_sizes: Vec<Vec2> = self.children
.iter_mut()
.enumerate()
.map(|(i, c)| {
c.get_min_size(final_lengths[i])
})
.collect();
// println_stderr!("Final sizes2: {:?}", final_sizes);
2016-07-13 08:19:05 +00:00
let compromise = self.orientation.stack(final_sizes.iter());
self.cache = Some(SizeCache::build(compromise, req));
2016-07-13 08:19:05 +00:00
compromise
}
2015-06-08 22:11:44 +00:00
fn on_event(&mut self, event: Event) -> EventResult {
match self.children[self.focus].view.on_event(event) {
2016-06-25 23:36:22 +00:00
EventResult::Ignored => {
match event {
2016-06-28 05:40:11 +00:00
Event::Key(Key::Tab) if self.focus > 0 => {
2016-06-25 23:36:22 +00:00
self.focus -= 1;
EventResult::Consumed(None)
}
Event::Shift(Key::Tab) if self.focus + 1 <
2016-07-11 02:11:21 +00:00
self.children.len() => {
2016-06-25 23:36:22 +00:00
self.focus += 1;
EventResult::Consumed(None)
}
2016-07-10 02:05:51 +00:00
Event::Key(Key::Left) if self.orientation ==
Orientation::Horizontal &&
self.focus > 0 => {
2016-06-25 23:36:22 +00:00
self.focus -= 1;
EventResult::Consumed(None)
}
2016-07-10 02:05:51 +00:00
Event::Key(Key::Up) if self.orientation ==
Orientation::Vertical &&
self.focus > 0 => {
2016-06-25 23:36:22 +00:00
self.focus -= 1;
EventResult::Consumed(None)
}
2016-07-10 02:05:51 +00:00
Event::Key(Key::Right) if self.orientation ==
Orientation::Horizontal &&
self.focus + 1 <
self.children.len() => {
2016-06-25 23:36:22 +00:00
self.focus += 1;
EventResult::Consumed(None)
}
2016-07-10 02:05:51 +00:00
Event::Key(Key::Down) if self.orientation ==
Orientation::Vertical &&
self.focus + 1 <
self.children.len() => {
2016-06-25 23:36:22 +00:00
self.focus += 1;
EventResult::Consumed(None)
}
_ => EventResult::Ignored,
2016-03-15 22:37:57 +00:00
}
2016-06-25 23:36:22 +00:00
}
2015-06-08 22:11:44 +00:00
res => res,
}
}
}