mirror of
https://gitlab.kit.edu/uskyk/typicalc.git
synced 2024-11-09 10:50:42 +00:00
Add tree texts to bundle (only german)
This commit is contained in:
parent
6968a4b5f2
commit
c3deae0bcc
@ -193,3 +193,51 @@ share.packagesTree.label=Pakete (Typherleitungsbaum)
|
||||
share.latexTree.label=LaTeX-Code (vollständiger Typherleitungsbaum)
|
||||
share.packagesUnification.label=Pakete (Unifikation/MGU)
|
||||
share.latexUnification.label=LaTeX-Code (aktueller Schritt in Unifikation/MGU)
|
||||
|
||||
explanationTree.initial1=Zu Beginn der Typinferenz wird dem eingegebenen Term
|
||||
explanationTree.initial2=die Typvariable
|
||||
explanationTree.initial3=zugewiesen. In den folgenden Schritten wird der Typ von
|
||||
explanationTree.initial4=sukzessive bestimmt.
|
||||
explanationTree.varStep1=Der aktuelle Term
|
||||
explanationTree.varStep2=ist eine Variable. Daher wird in diesem Schritt die Var-Regel auf die Variable
|
||||
explanationTree.varStep3=vom Typ
|
||||
explanationTree.varStep4=angewendet. Da
|
||||
explanationTree.varStep5=unter der Typumgebung den Typen
|
||||
explanationTree.varStep6=besitzt, wird die Bedingung
|
||||
explanationTree.varStep7=der Constraintmenge hinzugefügt.
|
||||
explanationTree.absStep1=Da der aktuelle Term
|
||||
explanationTree.absStep2=eine Abstraktion vom Typ
|
||||
explanationTree.absStep3=mit Parameter
|
||||
explanationTree.absStep4=und Ergebnis
|
||||
explanationTree.absStep5=ist, wird in diesem Schritt die Abs-Regel angewendet. Dafür wird dem Parameter der Typ
|
||||
explanationTree.absStep6=und dem Ergebnis der Typ
|
||||
explanationTree.absStep7=zugewiesen. Da die Abstraktion unter dieser zusätzlichen Annahme den Typ
|
||||
explanationTree.absStep8=besitzt, muss die Bedingung
|
||||
explanationTree.absStep9=der Constraintmenge hinzugefügt werden.
|
||||
explanationTree.appStep1=Da der aktuelle Term
|
||||
explanationTree.appStep2=eine Applikation vom Typ
|
||||
explanationTree.appStep3=mit Funktion
|
||||
explanationTree.appStep4=und Argument
|
||||
explanationTree.appStep5=ist, wird in diesem Schritt die App-Regel angewendet. Dafür wird der Funktion der Typ
|
||||
explanationTree.appStep6=und dem Argument der Typ
|
||||
explanationTree.appStep7=zugewiesen. Da die Funktion unter dieser zusätzlichen Annahme den Typ
|
||||
explanationTree.appStep8=besitzt, muss die Bedingung
|
||||
explanationTree.appStep9=der Constraintmenge hinzugefügt werden.
|
||||
explanationTree.constStep1=Der aktuelle Term
|
||||
explanationTree.constStep2=ist eine Konstante. Daher wird in diesem Schritt die Const-Regel auf die Konstante
|
||||
explanationTree.constStep3=vom Typ
|
||||
explanationTree.constStep4=angewendet. Da
|
||||
explanationTree.constStep5=ein
|
||||
explanationTree.constStep6=Wert ist, wird die Bedingung
|
||||
explanationTree.constStep7=der Constraintmenge hinzugefügt.
|
||||
explanationTree.letStep1=Da der aktuelle Term
|
||||
explanationTree.letStep2=ein Let-Ausdruck vom Typ
|
||||
explanationTree.letStep3=mit Variable
|
||||
explanationTree.letStep4=, Definition
|
||||
explanationTree.letStep5=und innerem Term
|
||||
explanationTree.letStep6=ist, wird in diesem Schritt die Let-Regel angewendet. Dafür wird im linken Teilbaum eine neue \
|
||||
Typinferenz mit dem Term
|
||||
explanationTree.letStep7=gestartet. Mit dem Ergebnis der Let-Teilinferenz lässt sich anschließend der Typ der Variable
|
||||
explanationTree.letStep8=bestimmen. Da der Let-Ausdruck und der innere Term vom gleichen Typ sind, muss außerdem die \
|
||||
Bedingung
|
||||
explanationTree.letStep9=der Constraintmenge hinzugefügt werden.
|
||||
|
Loading…
Reference in New Issue
Block a user