mirror of
https://gitlab.kit.edu/uskyk/typicalc.git
synced 2024-11-08 18:30:42 +00:00
make inference rule appearance consistent with tree appearance
This commit is contained in:
parent
7494407480
commit
2df0107243
@ -9,42 +9,50 @@ root.appLatex=\
|
||||
\
|
||||
\\AxiomC{$\\Gamma \\vdash t_2 : \\tau_1$}\
|
||||
\
|
||||
\\LeftLabel{APP}\
|
||||
\\LeftLabel{\\rm A{\\small PP}}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash t_1 \\ t_2 : \\tau_2$}\
|
||||
\\end{prooftree}
|
||||
|
||||
root.absLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{$\\Gamma , x: \\tau_1 \\vdash t : \\tau_2$}\
|
||||
\\AxiomC{$\\Gamma , \\texttt{x}: \\tau_1 \\vdash t : \\tau_2$}\
|
||||
\
|
||||
\\LeftLabel{ABS}\
|
||||
\\UnaryInfC{$\\Gamma \\vdash \\lambda x.t : \\tau_1 \\rightarrow \\tau_2$}\
|
||||
\\LeftLabel{\\rm A{\\small BS}}\
|
||||
\\UnaryInfC{$\\Gamma \\vdash \\lambda \\texttt{x}.t : \\tau_1 \\rightarrow \\tau_2$}\
|
||||
\\end{prooftree}
|
||||
|
||||
root.varLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{$\\Gamma (x) = \\tau$}\
|
||||
\\AxiomC{$\\Gamma (\\texttt{x}) = \\tau$}\
|
||||
\
|
||||
\\LeftLabel{VAR}\
|
||||
\\UnaryInfC{$\\Gamma \\vdash x : \\tau'$}\
|
||||
\\LeftLabel{\\rm V{\\small AR}}\
|
||||
\\UnaryInfC{$\\Gamma \\vdash \\texttt{x} : \\tau'$}\
|
||||
\\end{prooftree}
|
||||
|
||||
root.constLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{$\\texttt{c} \\in Const$}\
|
||||
\
|
||||
\\LeftLabel{\\rm C{\\small ONST}}\
|
||||
\\UnaryInfC{$\\Gamma \\vdash \\texttt{c} : \\tau_c$}\
|
||||
\\end{prooftree}
|
||||
|
||||
root.letLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{$\\Gamma \\vdash t_1 : \\tau_1$}\
|
||||
\
|
||||
\\AxiomC{$\\Gamma , x : ta(\\tau_1 , \\Gamma ) \\vdash t_2 : \\tau_2$}\
|
||||
\\AxiomC{$\\Gamma , \\texttt{x} : ta(\\tau_1 , \\Gamma ) \\vdash t_2 : \\tau_2$}\
|
||||
\
|
||||
\\LeftLabel{APP}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash\ \\textbf{let} \\ x = t_1 \\ \\textbf{in} \\ t_2 : \\tau_2$}\
|
||||
\\LeftLabel{\\rm L{\\small ET}}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash\ \\textbf{let} \\ \\texttt{x} = t_1 \\ \\textbf{in} \\ t_2 : \\tau_2$}\
|
||||
\\end{prooftree}
|
||||
|
||||
root.varLetLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{$\\Gamma (x) = \\tau'$}\
|
||||
\\AxiomC{$\\Gamma (\\texttt{x}) = \\tau'$}\
|
||||
\
|
||||
\\AxiomC{$\\tau' \\succeq \\tau$}\
|
||||
\
|
||||
\\LeftLabel{VAR}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash x : \\tau$}\
|
||||
\\LeftLabel{\\rm V{\\small AR}}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash \\texttt{x} : \\tau$}\
|
||||
\\end{prooftree}
|
@ -17,22 +17,14 @@ root.german=Deutsch
|
||||
root.english=Englisch
|
||||
root.selectLanguage=Sprache
|
||||
|
||||
root.constLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{\\texttt{c ist eine Konstante}}\
|
||||
\
|
||||
\\LeftLabel{CONST}\
|
||||
\\UnaryInfC{$\\Gamma \\vdash c : \\tau_c$}\
|
||||
\\end{prooftree}
|
||||
|
||||
root.absLetLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{$\\Gamma , x: \\tau_1 \\vdash t : \\tau_2$}\
|
||||
\\AxiomC{$\\Gamma , \\texttt{x}: \\tau_1 \\vdash t : \\tau_2$}\
|
||||
\
|
||||
\\AxiomC{$\\tau_1$ \\ \\texttt{kein Typschema}}\
|
||||
\
|
||||
\\LeftLabel{ABS}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash \\lambda x.t : \\tau_1 \\rightarrow \\tau_2$}\
|
||||
\\LeftLabel{\\rm A{\\small BS}}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash \\lambda \\texttt{x}.t : \\tau_1 \\rightarrow \\tau_2$}\
|
||||
\\end{prooftree}
|
||||
|
||||
demo-tree=\
|
||||
|
@ -17,22 +17,14 @@ root.german=German
|
||||
root.english=English
|
||||
root.selectLanguage=Language
|
||||
|
||||
root.constLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{\\texttt{c is a constant}}\
|
||||
\
|
||||
\\LeftLabel{CONST}\
|
||||
\\UnaryInfC{$\\Gamma \\vdash c : \\tau_c$}\
|
||||
\\end{prooftree}
|
||||
|
||||
root.absLetLatex=\
|
||||
\\begin{prooftree}\
|
||||
\\AxiomC{$\\Gamma , x: \\tau_1 \\vdash t : \\tau_2$}\
|
||||
\\AxiomC{$\\Gamma , \\texttt{x}: \\tau_1 \\vdash t : \\tau_2$}\
|
||||
\
|
||||
\\AxiomC{$\\tau_1$ \\ \\texttt{no type scheme}}\
|
||||
\
|
||||
\\LeftLabel{ABS}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash \\lambda x.t : \\tau_1 \\rightarrow \\tau_2$}\
|
||||
\\LeftLabel{\\rm A{\\small BS}}\
|
||||
\\BinaryInfC{$\\Gamma \\vdash \\lambda \\texttt{x}.t : \\tau_1 \\rightarrow \\tau_2$}\
|
||||
\\end{prooftree}
|
||||
|
||||
demo-tree=\
|
||||
|
Loading…
Reference in New Issue
Block a user