\documentclass[a4paper,10pt,ngerman]{scrartcl} \usepackage{babel} \usepackage[a4paper,margin=2.5cm]{geometry} % automatische Quotes \usepackage{csquotes} % Die nächsten drei Felder bitte anpassen: \newcommand{\Name}{Arne Keller} % Teamname oder eigenen Namen angeben \newcommand{\TeilnahmeId}{50966} \newcommand{\Aufgabe}{Aufgabe 1: Lisa rennt} % Kopf- und Fußzeilen \usepackage{scrlayer-scrpage, lastpage} \setkomafont{pageheadfoot}{\textrm} \lohead{\Aufgabe} \chead{\thepage{}/\pageref{LastPage}} \rohead{\Name/Teilnahme-Id: \TeilnahmeId} \cfoot{} % Für mathematische Befehle und Symbole \usepackage{amsmath,amsthm,amssymb,gensymb} % Für Bilder \usepackage{graphicx,subcaption,float} % Für Skizzen \usepackage{tkz-euclide} \usetkzobj{all} % Für Quelltext \usepackage{listings} \usepackage{color} \definecolor{mygreen}{rgb}{0,0.6,0} \definecolor{mygray}{rgb}{0.5,0.5,0.5} \definecolor{mymauve}{rgb}{0.58,0,0.82} \lstset{ keywordstyle=\color{blue},commentstyle=\color{mygreen}, stringstyle=\color{mymauve},rulecolor=\color{black}, basicstyle=\footnotesize\ttfamily,numberstyle=\tiny\color{mygray}, captionpos=b, % sets the caption-position to bottom keepspaces=true, % keeps spaces in text numbers=left, numbersep=5pt, showspaces=false,showstringspaces=false, showtabs=false, stepnumber=2, tabsize=2, title=\lstname } \lstdefinelanguage{Rust}{ keywords={break, match, continue, else, for, fn, if, return, self, let, mut, loop, while, extern, crate, use, static, enum, struct, impl, as, type, derive, mod}, morecomment=[l]{//}, morecomment=[s]{/*}{*/}, morestring=[b]", sensitive=true } % Diese beiden Pakete müssen als letztes geladen werden %\usepackage{hyperref} % Anklickbare Links im Dokument %\usepackage{cleveref} % Daten für die Titelseite \title{\Aufgabe} \author{\Name\\Teilnahme-ID: \TeilnahmeId} \date{29. April 2019} \begin{document} \maketitle \tableofcontents \section{Lösungsidee} Zunächst kann man feststellen, dass jeder Abschnitt einer Route immer exakt gerade sein muss. In einer Kurve würde Lisa länger laufen, ohne am Ende weiter zu kommen. Wenn Lisa am Ende der Route zum Bus läuft, gibt es keinen, einen oder zwei Treffpunkte, bei denen Lisa (ohne zu warten) den Bus erwischt: \begin{figure}[H] \centering \begin{subfigure}{.33\textwidth} \centering \begin{tikzpicture} \tkzInit[xmax=3.5,ymax=6.5] \tkzAxeXY \tkzGrid \tkzDefPoint(0,0){B} \tkzDefPoint(1.25,3.5){L} \tkzDefPoint(0,2.83333){M1} \tkzDefPoint(0,6.5){M2} \tkzDrawSegment(L,M1) \tkzDrawSegment(L,M2) \tkzDrawPoints(B,L,M1,M2) \tkzLabelPoints(B,L,M1,M2) \end{tikzpicture} \caption{Zwei Treffpunkte} \label{abb:fall1} \end{subfigure}% \begin{subfigure}{.33\textwidth} \centering \begin{tikzpicture} \tkzInit[xmax=3.5,ymax=6.5] \tkzAxeXY \tkzGrid \tkzDefPoint(0,0){B} \tkzDefPoint(2.020725942,3.5){L} \tkzDefPoint(0,4.614){M} \tkzDrawSegment(L,M) \tkzDrawPoints(B,L,M) \tkzLabelPoints[yshift=14pt](M) \tkzLabelPoints(B,L) \end{tikzpicture} \caption{Ein Treffpunkt} \label{abb:fall2} \end{subfigure}% \begin{subfigure}{.33\textwidth} \centering \begin{tikzpicture} \tkzInit[xmax=3.5,ymax=6.5] \tkzAxeXY \tkzGrid \tkzDefPoint(0,0){B} \tkzDefPoint(3,3.5){L} \tkzDrawPoints(B,L) \tkzLabelPoints(B,L) \end{tikzpicture} \caption{Kein Treffpunkt} \label{abb:fall3} \end{subfigure} \caption{Mögliche Treffpunktanzahlen} \label{fig:treffpunkte} \end{figure} \begin{proof} Sei Lisa bei $L(x_{L},y_{L})$ und der Bus bei $B(x_{B},y_{B})$. $M(x_{M},y_{M})$ sei der Treffpunkt von Lisa mit dem Bus. $d$ sei der Weg, den Lisa zu diesem Punkt geht. \begin{align*} d &= \sqrt{(x_{L}-x_{M})^2 + (y_{L}-y_{M})^2} &&\text{(Satz des Pythagoras)} \\ &= \sqrt{x_{L}^2 + (y_{L}-y_{M})^2} &&\text{($x_{B} = x_{M} = 0$)} \\ d^2 &= x_{L}^2 + (y_{L}-y_{M})^2 \\ &= x_{L}^2 + (y_{L}-y_{B}-2d)^2 &&\text{($y_{M} = y_{B} + 2d$)} \\ &= x_{L}^2 + y_{L}^2 + y_{B}^2 + 4d^2 - 2y_{B}y_{L} - 4dy_{L} + 4dy_{B} \\ 0 &= x_{L}^2 + y_{L}^2 + y_{B}^2 + 3d^2 - 2y_{B}y_{L} - 4dy_{L} + 4dy_{B} \\ d &= \frac{-b\pm\sqrt{b^2 - 12\cdot{}(x_{L}^2 + y_{L}^2 + y_{B}^2 - 2y_{B}y_{L})}}{6} &&\text{($b = 4\cdot(y_{B}-y_{L})$)} \end{align*} Für diese Gleichung gibt es maximal zwei nicht-negative Lösungen.\qedhere \end{proof} Um den letzten Zeitpunkt, bei dem sie den Bus gerade noch erwischt, zu bestimmen, kann man die Wurzel in der letzen Gleichung gleich Null setzen. Wenn man nach $y_{B}$ auflöst, erhält man die Position des Busses, bei dessen Durchquerung Lisa anfangen sollte zu laufen. So kann man für jeden Startpunkt berechnen, wann Lisa spätestens von dort loslaufen müsste. Natürlich wäre ein Konstruktionsalgorithmus, der eine optimale Route schnell aufstellt, sehr praktisch, aber ich konnte so einen Algorithmus nicht bestimmen. Mit einigen Modifizierungen sollte es aber möglich sein, eine optimale Route mittels A* oder einem ähnlichen Algorithmus zu finden. Allerdings wäre es nicht leicht, für A* eine Heuristik aufzustellen. Daher sind Suchalgorithmen ohne Heuristiken, wie z. B. Tiefen- oder Breitensuchen, für diese Aufgabe besser geeignet. Außerdem kann nicht nur die Strecke der Route berücksichtigt werden, da Lisa nicht eine möglichst kurze Strecke, sondern möglichst spät aufstehen will. Der letzte Abschnitt ihrer Route trifft die y-Achse immer in einem 60\degree-Winkel (siehe Abb. \ref{fig:winkel}). Dieser Winkel ist vom Verhältnis der Geschwindigkeiten von Lisa und dem Bus abhängig: $cos(60\degree) = \frac{15}{30}$. \begin{figure}[H] \centering \begin{subfigure}{.33\textwidth} \centering \begin{tikzpicture} \tkzInit[xmax=3.5,ymax=6.3] \tkzAxeXY \tkzGrid \tkzDefPoint(0,0.3){B} \tkzDefPoint(2,4){L} \tkzDefPoint(0,4.36667){M} \tkzMarkAngle[fill=orange,size=0.8cm,opacity=.4](B,M,L) \tkzDrawSegment(L,M) \tkzDrawSegment(B,M) \tkzDrawPoints(B,L,M) \tkzLabelAngle[pos=0.5](B,M,L){$\alpha$} \tkzLabelPoints[yshift=14pt](M,B) \tkzLabelPoints(L) \end{tikzpicture} \caption{$\alpha > 60\degree$} \label{abb:winkel1} \end{subfigure}% \begin{subfigure}{.33\textwidth} \centering \begin{tikzpicture} \tkzInit[xmax=3.5,ymax=6.3] \tkzAxeXY \tkzGrid \tkzDefPoint(0,0.5359){B} \tkzDefPoint(2,4){L} \tkzDefPoint(0,5.155){M} \tkzMarkAngle[fill=orange,size=0.8cm,opacity=.4](B,M,L) \tkzDrawSegment(L,B) \tkzDrawSegment(B,M) \tkzDrawSegment(L,M) \tkzMarkRightAngle(M,L,B) \tkzDrawPoints(B,L,M) \tkzLabelAngle[pos=0.5](B,M,L){$\alpha$} \tkzLabelPoints[yshift=14pt](M) \tkzLabelPoints(B,L) \end{tikzpicture} \caption{$\alpha = 60\degree$} \label{abb:winkel2} \end{subfigure}% \begin{subfigure}{.33\textwidth} \centering \begin{tikzpicture} \tkzInit[xmax=3.5,ymax=6.3] \tkzAxeXY \tkzGrid \tkzDefPoint(0,0.3){B} \tkzDefPoint(2,4){L} \tkzDefPoint(0,6.1){M} \tkzMarkAngle[fill=orange,size=0.8cm,opacity=.4](B,M,L) \tkzDrawSegment(L,M) \tkzDrawSegment(B,M) \tkzDrawPoints(B,L,M) \tkzLabelAngle[pos=0.5](B,M,L){$\alpha$} \tkzLabelPoints[yshift=14pt](M,B) \tkzLabelPoints(L) \end{tikzpicture} \caption{$\alpha < 60\degree$} \label{abb:winkel3} \end{subfigure} \caption{Mögliche Winkel} \label{fig:winkel} \end{figure} \section{Bedienung des Programms} Das Programm liest die Problemstellung von der Standardeingabe ein. Die grafische Ausgabe wird in die Standardausgabe geschrieben. Wird $-t$ übergeben, kann die Ausgabe in einem \LaTeX-Dokument verwendet werden. Standardmäßig wird ein SVG-Dokument erzeugt. Falls man die Geschwindigkeit von Lisa oder dem Bus verändern will, kann man dies mit $-l$ bzw. $-b$ tun. Für zusätzliche Debug-Ausgaben kann man $-d$ verwenden. Die Standardoptionen $-h$ und $-V$ zeigen die Hilfe und die Version des Programms an. \lstinputlisting[caption=Hilfetext des Programmes,frame=single,breaklines=true]{help.txt} Das vorgegebene Eingabeformat ist mühsam zu schreiben. Daher kann das Programm auch SVG-Dateien einlesen. Punkte werden als Startpunkte interpretiert, sonstige Pfade als Hindernisse. Interessanterweise ist die y-Achse in SVGs umgedreht, was vom Programm ausgeglichen wird. So sehen das Original-SVG und die Lösung gleich aus. \section{Umsetzung} Das Programm benutzt den Dijkstra-Algorithmus, um die beste Route für Lisa zu finden. Lisas Haus und die Ecken aller Polygone kann als Graph darstellen. Die Kanten des Graphen haben ein Gewicht, das der Zeit entspricht, die Lisa früher aufstehen müsste, wenn sie zu einem bestimmten Punkt geht, statt direkt zum Bus zu gehen. Die Distanz zwischen zwei Punkten wäre definitv eine falsche Gewichtung, weil Lisa die y-Achse in einem bestimmten Winkel treffen sollte. Der kürzeste Weg würde höchstwahrscheinlich relativ direkt zur y-Achse führen, was nicht optimal ist. Um die Route abzuschließen, probiert das Programm danach immer, auf direktem Weg die y-Achse zu erreichen. Die Route, bei dem Lisa sich am meisten Zeit lassen kann, wird gespeichert und beschrieben. Der Weg von Lisa und dem Bus wird animiert ausgegeben. Zusätzlich zu den unbedingt benötigten Ausgaben wie z.B. der Start- und Zielzeit gibt das Programm auch noch die theoretisch (ohne Hindernisse) beste Startzeit aus. Nützlich sind auch die Debug-Ausgaben, die Statistiken zur Eingabedatei und der Performanz (Zeit pro Iteration, Gesamtzeit) enthalten. \subsection{Laufzeitanalyse} Da programmintern der Dijkstra-Algorithmus verwendet wird, entspricht die Laufzeit in etwa diesem. Somit ist die Zeitkomplexität ca. $O(n^2)$, wobei $n$ die Anzahl der Ecken aller Polygone ist. Effektiv können allerdings in jedem Schritt nur eine kleine Anzahl anderer Ecken erreicht werden, was den Algorithmus beschleunigen könnte. In Abschnitt \ref{performance} werden diese theoretischen Werte überprüft. \subsection{Optimierungen} Das Programm benutzt bestimmte Heuristiken, um die Suche zu beschleunigen. Eine davon ist die maximal mögliche Aufstehzeit für eine bestimmte Route. Um diese schnell zu berechnen, kann man zunächst feststellen, das der Bus mit konstanter Geschwindigkeit fährt. Deshalb ist eine Startposition des Busses mit einer kleineren y-Koordinate äquivalent zu einem früheren Aufstehen von Lisa. Das Programm berechnet daher die höchstmögliche Startposition für eine gegebene Route, weil diese Größe proportional zur gesuchten Größe ist. Um zu überprüfen, ob ein Routenabschnitt die Hindernisse schneidet, wird unter anderem ein R*-Baum benutzt. Ein R*-Baum funktioniert ähnlich wie ein Binärbaum, aber mit geometrischen Objekten statt normal sortierbaren Datenstrukturen. Für jedes Hindernis muss die Rechteckbox bestimmt werden, in die das Polygon genau passt. Aufgebaut wird der Baum dann aus diesen minimal umgebenden Rechtecken, wobei in jedem Indexknoten generell mehrere Unterknoten enthalten sind. Im Indexknoten ist auch das gemeinsame umgebende Rechteck gespeichert. So kann man dann für eine beliebige geometrische Figur (z. B. auch eine Linie) alle Polygone finden, die diese schneiden, indem man ausgehend vom Hauptindexknoten überprüft, welche Unterknoten die Linie schneidet. Dies wird wiederholt, bis die unterste Ebene, die die Polygone enthält, erreicht ist. Danach wird für jedes Hindernis überprüft, ob die Linie dieses nicht nur berührt, sondern auch schneidet. Für ca. 40 Polygone ist diese Methode ca. 5-6x schneller als alle Polygone zu überprüfen. Die Geschwindigkeitsgewinne werden größer, je mehr Polygone vorhanden sind. Zudem wird das Ergebnis in einer Hashtabelle gespeichert, was die insgesamte Performanz ca. 6-10x steigert. Von eher technischer Natur sind bestimmte Compiler-Optionen wie LTO (Link-time optimization) oder das Verwenden einer einzigen Codegen-Einheit, um mehr Optimierungen zu ermöglichen. Auch das Deaktivieren vom sogenannten 'unwinding' nach einem fatalen Fehler ('panic') verbessert die Performanz. Valgrind (ein Profiler) und KCachegrind (Auswertung der Profiling-Daten) waren auch sehr hilfreich, um herauszufinden, welche Programmteile besonders ineffizient sind. Trotzdem sind die im letzten Abschnitt beschriebenen Hindernisüberprüfungen für mehr als 90\% der Laufzeit verantwortlich. \section{Beispiele} Alle Beispiele sind im Maßstab 1:70m. Für die folgenden fünf Beispiele benötigt das Programm höchstens 1 ms Rechenzeit. \lstinputlisting[caption=Lösung für lisarennt1.txt,frame=single,breaklines=true]{run1.txt} \begin{figure}[H] \centering \input{run1.tkz} \caption{Beispiel 1} \label{fig:bsp1} \end{figure} \lstinputlisting[caption=Lösung für lisarennt2.txt,frame=single,breaklines=true]{run2.txt} \begin{figure}[H] \centering \input{run2.tkz} \caption{Beispiel 2} \label{fig:bsp2} \end{figure} \lstinputlisting[caption=Lösung für lisarennt3.txt,frame=single,breaklines=true]{run3.txt} \begin{figure}[H] \centering \input{run3.tkz} \caption{Beispiel 3} \label{fig:bsp3} \end{figure} \lstinputlisting[caption=Lösung für lisarennt4.txt,frame=single,breaklines=true]{run4.txt} \begin{figure}[H] \centering \input{run4.tkz} \caption{Beispiel 4} \label{fig:bsp4} \end{figure} \lstinputlisting[caption=Lösung für lisarennt5.txt,frame=single,breaklines=true]{run5.txt} \begin{figure}[H] \centering \input{run5.tkz} \caption{Beispiel 5} \label{fig:bsp5} \end{figure} \subsection{Eigene Beispiele} \lstinputlisting[caption=Lösung für Abb. \ref{fig:ebsp2} (5 ms Rechenzeit),frame=single,breaklines=true]{runwelt3.txt} \begin{figure}[H] \centering \input{welt3.tkz} \caption{Heuristikfalle} \label{fig:ebsp2} \end{figure} \lstinputlisting[caption=Lösung für Abb. \ref{fig:ebsp3} (30 ms Rechenzeit),frame=single,breaklines=true]{runwelt4.txt} \begin{figure}[H] \centering \input{welt4.tkz} \caption{Angriff der Dreiecksgrundstücke (aus Aufgabe 2 entflohen)} \label{fig:ebsp3} \end{figure} \lstinputlisting[caption=Lösung für Abb. \ref{fig:ebsp4} (250 ms Rechenzeit),frame=single,breaklines=true]{runwelt7b.txt} \begin{figure}[H] \centering \input{welt7b.tkz} \caption{Text} \label{fig:ebsp4} \end{figure} \lstinputlisting[caption=Lösung für Abb. \ref{fig:ebsp5} (4 ms Rechenzeit),frame=single,breaklines=true]{runwelt5.txt} \begin{figure}[H] \centering \input{welt5.tkz} \caption{Mauern} \label{fig:ebsp5} \end{figure} \lstinputlisting[caption=Lösung für Abb. \ref{fig:ebsp6} (3 ms Rechenzeit),frame=single,breaklines=true]{runwelt6.txt} \begin{figure}[H] \centering \input{welt6.tkz} \caption{Oktagone} \label{fig:ebsp6} \end{figure} \lstinputlisting[caption=Lösung für Abb. \ref{fig:ebsp7} (25 ms Rechenzeit),frame=single,breaklines=true]{runwelt8.txt} \begin{figure}[H] \centering \input{welt8.tkz} \caption{Höhle} \label{fig:ebsp7} \end{figure} \lstinputlisting[caption=Lösung für Abb. \ref{fig:ebsp8} (3 s Rechenzeit),frame=single,breaklines=true]{runwelt9.txt} \begin{figure}[H] \centering \input{welt9.tkz} \caption{Irrgarten} \label{fig:ebsp8} \end{figure} \subsection{Performanzmessungen} \label{performance} Die Routenberechnung für die Welt aus Abb. \ref{fig:ebsp3} benötigt ca. 30 ms (452 Ecken). Für vier dieser Welten, die in einem Quadrat angeordnet sind (1808 Ecken), benötigt das Programm ca. 900 ms. Die Laufzeit ist daher ungefähr proportional zu $n^{2.5}$, wobei $n$ die Anzahl der Ecken ist. Dies bestätigt auch eine weitere Messung mit einer nochmals so vergrößerten Welt: 7224 Ecken, 29000 ms. \section{Quellcode (Hauptalgorithmus)} \lstinputlisting[frame=single,language=Rust,breaklines=true]{src/main.rs} \end{document}